Transformações de gráficos de funções
Dependendo de como você aprendeu (ou pior ainda, não aprendeu nada!!) funções na escola, os gráficos podem ser um grande desafio a ser superado. Quando resolvemos equações estamos fazendo contas aritméticas básicas e, na maior parte do tempo, sem pensar no gráfico. Unindo a visualização gráfica com operações aritméticas simples conseguimos uma interpretação mais completa dos problemas.
Os livros que eu conheço não trazem muitas explicações a respeito da translação de funções. Eles somente listam as propriedades, dão exemplos, mas não aprofundam. Eu achei que o conceito de função composta ajudaria a evitar confusões com o sinal de menos em alguns casos.
Em alguns trechos eu menciono a álgebra linear porque tem conceitos da álgebra linear que ajudam a entender o que acontece com funções quando transformamos seus respectivos gráficos com algumas operações. Os professores de cálculo frequentemente mencionam que multiplicar uma função por uma constante é uma "operação ou transformação linear" sem dar maiores explicações. Linear diz respeito à deformação do gráfico ser constante. O gráfico não é "destruído" no sentido de perder o seu formato original, como curvas sendo esticadas ou retas dobradas por exemplo. Não-linear diz respeito a um fator de deformação que não é constante. O gráfico perde a sua forma original, com perda das suas proporções originais.
Transladando o gráfico para cima / baixo
Refletindo o gráfico na vertical
Deformando o gráfico
Reflecting the graph horizontally
Translating the graph sideways
The first way to explain this is pretty simple. What we want to achieve is this: for each step [math]\displaystyle{ n }[/math] we take in [math]\displaystyle{ x }[/math] to the right, we want each and every point of the graph to move accordingly and not move any units up or down, nor increase or decrease the distance between them. Suppose we use [math]\displaystyle{ n = 1 }[/math]. We calculate [math]\displaystyle{ f(1), \ f(2), \ f(3), \ ... }[/math]. At the horizontal axis we are moving to the right at a constant rate of 1. At the vertical axis, however, each image is moving upwards because we are calculating [math]\displaystyle{ x^2 }[/math]. Hence, we want [math]\displaystyle{ f(1), \ f(2), \ f(3), \ ... }[/math] to not change their respective images before and after moving to the right. How do we "fix" that? We do the opposite, subtract 1 from the function's argument so that each and every image remains at their original heights. In other words [math]\displaystyle{ f(1 - 1), \ f(2 - 2), \ f(3 - 3), \ ... }[/math]. Therefore, to move the function's graph to the right by [math]\displaystyle{ n }[/math] units we change the argument to [math]\displaystyle{ (x - n) }[/math]. The same reasoning to move the function to the left, with the difference of a "+" sign.
[math]\displaystyle{ g_2(x) }[/math]. I used the index to differentiate the function from before and after the translation.
The second way to explain this involves rates of change and composite functions. Use the identity function, overlap it with the parabola. They intersect at the origin and at [math]\displaystyle{ n = n^2 = 1 }[/math]. See that right triangle formed with the points origin, [math]\displaystyle{ f(n) = g(n) }[/math] and [math]\displaystyle{ n \ ? }[/math] Now move the functions to the right. That triangle remains intact, which means that we didn't change the rate of change of any of the two functions. The root of both functions, however, did change from [math]\displaystyle{ f(0) = g(0) = 0 }[/math] to a new position at [math]\displaystyle{ n }[/math]. Now the rate of change of the identity function being constant means that [math]\displaystyle{ g(x \pm n) = x \pm n }[/math]. When we move it down by [math]\displaystyle{ n }[/math] units, its root also moves to the right by the same [math]\displaystyle{ n }[/math] distance. What's the function that passes through the points [math]\displaystyle{ (0, \ -n) }[/math] and [math]\displaystyle{ (0, \ n) \ ? }[/math]. It's [math]\displaystyle{ g_2(x) = x - n }[/math]. For the parabola's vertex to coincide with the root of [math]\displaystyle{ g_2 }[/math] we have that [math]\displaystyle{ f_2(g_2(x)) = (x - n)^2 }[/math]. We want both the parabola and the straight line to have a height of zero there. That's a graphical way to understand composite functions.
Moving odd or even functions around
[math]\displaystyle{ \ \ \ f(x) = f(-x) }[/math]. Even function.
[math]\displaystyle{ -f(x) = f(-x) }[/math]. Odd function.
Both odd and even functions are symmetric, but that fact alone is not what makes them odd or even!
An even function remains even if you multiply it by a constant. The same is true for odd functions. Think about it. The constant factor deforms the function, but it does preserve the symmetry in respect to the vertical and horizontal axes.
To move a function up or down may or may not preserve the fact that the function is odd or even. See how the points of the parabola behave as we move the graph up or down. It's easy to see that it remains an even function. On the other hand, the identity function loses the property of being odd if we do that.
Moving the function to the right or to the left does preserve the function's symmetry and overall shape, but the function is no longer odd nor even. Think about it. If we move a parabola sideways, we didn't change its shape. However, we messed with its argument. Take two points, [math]\displaystyle{ a \neq b }[/math], such that [math]\displaystyle{ f(a) = f(b) }[/math]. After the function is moved sideways, we no longer have [math]\displaystyle{ |a - 0| = |b - 0| }[/math]. The same happens with odd functions. That is, the distance between the two arguments is preserved when the function is moved sideways. On the other hand, the distance between each argument and the origin is now different from each other.